The History of SIGGI

SIGGI’s history began at the same time as the Archaeological Auto-Classification System (AACS) project. In the fall of 2002, Dr. Corey Schou agreed to allow his students taking the Advanced Systems Analysis and Design class (CIS 482) to build an expert system for Dr. Lohse that would identify archaeological materials. The students were broken down into a number of teams, one of which was to build the “brains” behind the system; a neural network.

The neural network team was comprised of a set of students who were either computer science students, or had taken the neural networks class that the Computer Science department at Idaho State University offers. Though doing an excellent job of constructing a neural network, their creation was fatally flawed and needed to be replaced. The flaw in the original neural network stemmed from two basic design errors: first was a fundamental error in understanding what task the network was to accomplish, the other stemmed from the methods used to teach programming in the CS department at ISU.

Flaw 1: We designed it wrong

The first flaw in the original neural network was a direct result of the lead programmer of the neural network group not paying attention to all the information he was given by the main application design group. At some point the lead programmer for the neural network decided that he would simply modify the final project he built for the neural networks class. In that class the final project was to build an Optical Character Recognition (OCR) program. This project required the program to grab an image from a scanner, break the image into pieces containing individual characters, and then identify the characters and write the results into a text file. This was superficially similar to what was being done in AACS: accept an image of an artifact, extract the outline, and analyze the outline and report the results.

In the OCR program the extracted characters would be contained in an array of pixels roughly ten pixels high by ten pixels wide, for a total of 100 pixels per character. The instructor for the neural networks class showed his students a method of reducing the number of pixels required to represent each character to just nine pixels, or a new image three pixels high by three pixels wide. This compression algorithm would walk through the 10X10 image of the character and average values within a neighborhood of pixels. This would produce a set of new pixels that were derived from the pixels in the original image, and the results would be smaller yet still unique as no two characters would “compress” to the same pattern on the now much smaller 3X3 image.

The misunderstanding by the lead programmer for the neural network about what he was to do lead to the design of a neural network that tried to compress the extracted outline into a smaller yet still unique representation using the methods learned for compressing the characters in his OCR program. The extracted outline from the artifact took the form of an array consisting of pairs of values: a distance from one extracted pixel on the outline to another and the angle in radians from the first pixel to the second.

In essence the array of values the neural network was supposed to analyze consisted of value pairs, not raw pixels. The lead programmer for the neural network chose to consider them as being raw pixels. His application of the compression algorithm from his OCR program did not produce a smaller and unique representation of the original data. Coupled this with the errors introduced through the second flaw in the design of the neural network described below, all this attempt at compression did was “blur” the dataset into an unrecognizable blob. The neural network could not be trained to recognize anything.

Flaw 2: They taught us wrong

The design team for the original neural network were a set of students who had all been trained to design and program software by the faculty in the Computer Science department at Idaho State University. The members of the faculty in the CS department all focus on the same basic research areas. They are in fact not software engineers, but are electrical engineers who specialize in computer processor design and optimization. Due to their background they focus in their classes on stressing the design of optimized code that runs using the fewest processor cycles possible. Unfortunately, this methodology tends to produce software that doesn’t solve the right problem, but does run amazingly fast.

Coming from a background where optimization was stressed over solving the correct problem our design team began to optimize their product before the design requirements were finalized. These pre-optimizations lead to a series of very difficult to find errors, or bugs, being introduced into the foundation of the software they developed. Unfortunately, due to the one directional nature of the optimizations the design team choose to use, no one could figure out exactly what their code was doing incorrectly. All that could be determined was that there was at least one major error that was causing the blurring effect of the flaw described above to be magnified.

This magnification of the blurring effect came from a very simple error. Instead of advancing the compression matrix through the dataset by the size of the compression matrix, which was a five “pixel” array, it was only being advanced one “pixel” at a time. If you recall from the description of the input set above, each element in the input set was one part of a two part element describing the extracted line segment from the outline of the image.

With this in mind one error should be apparent. The five “pixel” mask was off in. The mask only covered two and a half line segments, not five segments as the design team believed. They chose five to be the mask size for the following reasons. First, if the input set consisted of twenty five samples (which it did), then the compression would produce only five elements that the neural network would need to analyze. Second, with five elements in the mask, the mask could cover the “pixel” of interest and its two neighbors on either side.

The second error with the mask was that instead of advancing the mask through the dataset by five each time, and therefore reducing the next block of five “pixels” into a single pixel, they only advanced the mask by one “pixel.” All this did was replace every element in the original input set with an average value of the five items covered by the mask. This is the blurring effect mentioned above.

Both of these problems seem to be fairly simple, and should have been easy to solve. Unfortunately the code, and in fact the entire design of the neural network, had been so over optimized before the design team really knew what they were to be doing none of them could find the exact locations in their own code where the errors were occurring.

For these reasons we were forced to scrap all the work they had done and start over from scratch.

The Re-Design of SIGGI

SIGGI was re-designed in the spring and summer of 2003 by Robert Schlader, the graduate student who had acted as an intermediary between the design team for the AACS project and Dr. Lohse. Schlader, a historian and Anthropologist by training, did have experience with computer programming, but had no experience with neural networks or with the Calculus required to make them function correctly. Most of the books available at the ISU Library were Mathematical texts (Bosque 2002, Fausett 1994, Freeman, J. and Skapura 1991, Haykin 1999, Khanna 1990, Masters 1993) which are incomprehensible to everyone but Mathematicians. For this reason Schlader turned to the internet for a plain-English description of neural networks.

Unfortunately, most of the websites found describing neural networks were also written in Mathematical formulae (Gurney 1997). Almost desperate Schlader began to search for any plain English description of neural networks. One was found in the most unlikely of places: game programming.

Most amateur game programmers are not Mathematicians, and therefore need plain English descriptions of advanced Mathematical formulations. A set of books for game programming turned out to not only have plain text descriptions of neural networks, but also held keys in their text to understanding the underlying Mathematical formulations contained in the standard sources about neural networks.

The first book Schlader found, and formed the basis for the new neural network, is “AI Techniques for Game Programming” by Matt Buckland (Buckland 2002). This book covers genetic algorithms and neural networks and how to apply them to the artificial intelligence of games. Though there are many types of neural networks, Buckland only describes the Feed-Forward neural network. This type of network is described by Buckland as being very good at solving very simple classification type problems. This is exactly what was needed for SIGGI.

The examples provided by Buckland in his book were all written in C++ and centered on a Network class that used a node and layer structure as the foundation. Schlader choose instead of a class and structure model, to implement a fully object oriented design for the new neural network. This solution required designing three classes: a node class, a layer class, and a network class. Using Buckland’s examples as a starting point, the first try to design an object oriented neural network proceeded quickly.

This first neural network was made using Microsoft’s Visual Basic, as that was the programming language most familiar to Schlader at the time. Unfortunately this neural network failed to work. This stems from the failure of Schlader to properly understand the backpropogation through gradient descent algorithms involved in training a neural network. Schlader’s failure to properly understand the backpropogation algorithm leads to a miss-design of the backpropogation routines in the new neural network.

This failure prompted Schlader to not only re-build the neural network in C#, but to also do more research into backpropogation. After re-reading, and being confused by the websites originally found in his search for information about neural networks, Schlader once again turned to game programming. This time, however, he found a reference to a book on Amazon.com that was frequently purchased with Buckland’s book. The title of this book is”AI Application Programming” written by M. Tim Jones (Jones 2003). This book covers not only neural networks, but a number of other AI concepts.

Jones’ book provided a different plain English description of the backpropogation rules. This description provided the solutions required by Schlader to fix his new version of the neural network. The new network, however took a very long time (two days for the six simple shapes) to converge but did produce the desired accuracy of 95%. Though accurate this was just too slow. A faster solution was needed.

During the initial development of the AACS project, the lead programmer mentioned a different type of training algorithm for neural networks: Resilient Backpropogation or Rprop (Riedmiller and Braun 1993). This algorithm developed by Martin Reidmiller replaces the standard gradient descent methods used in the standard backpropogation algorithm with a fixed set of updates to the network depending on the sign of the partial derivative of the error. Though sounding complicated, Rprop is actually mush easier to calculate and to implement. Also, Rprop is much faster and accurate (the simple shapes took roughly two minutes to converge with an error of less than 1%).

After modifying the neural network to utilize Rprop the new network was married to an updated version of the original AACS software. This new version 2.0 of AACS accurately identifies projectile points from three different classification systems: The Columbia Plateau, The Great Basin, and The General Shapes.

References

Bosque M. 2002. Understanding 99% of ANN’s: Introduction and Tricks. San Jose, New York, Lincoln, Shanghi, Writers Club Press

Buckland, M. 2002. AI Techniques for Game Programming. Premier Press

Fausett, L. 1994, Fundamentals of Neural Networks: Architectures, Algorithms and Applications. Englewood Cliffs NJ, Prentice Hall

Freeman, J. and Skapura D. 1991. Neural Networks: Algorithms, Applications, and Programming Techniques. Reading Mass, Addison-Wesley Publishing Co

Gurney, K. 1997. An Introduction to Neural Networks. London & New York, Taylor and Francis Group Online version at URL http://www.shef.ac.uk/psychology/gurney/notes/ accessed 9-8-2004

Haykin S. 1999. Neural Networks: A Comprehensive Foundation, 2nd Edition. Upper Saddle River NJ, Prentice Hall

Jones, T. M. 2003. AI Application Programming. Hingham Mass, Charles River Media

Khanna T. 1990. Foundations of Neural Networks. Reading Mass, Addison-Wesley Publishing Co

Masters, T 1993. Practical Neural Network Recipes in C++. San Diego CA, Academic Press Inc

Riedmiller, M. and Braun, H. 1993. A direct adaptive method for faster backpropagation learning: The RPROP algorithm, Proc. of the IEEE Intl. Conf. on Neural Networks (San Francisco, CA), 1993, pp. 586--591.
